Keynote Speakers
|
序号
|
姓名
|
单位
|
题目
|
1
|
Ralph Bock
|
Max Planck Institute of Molecular Plant Physiology, Germany
|
待定
|
2
|
Jörg Kudla
|
Universität Münster, Germany
|
待定
|
3
|
何跃辉
|
北京大学
|
A cold-signaling mechanism drives the formation of ‘memory of prolonged cold’ in plants
|
4
|
何祖华
|
中国科学院分子植物卓越中心
|
Asymmetric selection of an NLR-TF immune network orchestrates rice subspecies-specific disease resistance and reproduction
|
5
|
洪亮
|
上海交通大学
|
General Artificial Intelligence for Protein Engineering Based on Pre-training (Venus Model)
|
6
|
严建兵
|
华中农业大学
|
A Zea genus-specific micropeptide with conserved function across species
|
7
|
杨淑华
|
中国农业大学
|
Molecular and genetic basis of cold tolerance for high-latitudinal adaptation in maize
|
8
|
袁晓辉
|
吉林农业大学/武汉理工大学
|
AI Agent for Agricultural Image Phenotypic Analysis
|
报告人
|
序号
|
姓名
|
单位
|
题目
|
1
|
白洋
|
北京大学
|
Fucntion and mechanism of root microbiotain in regulating rice growth and health
|
2
|
陈乐天
|
华南农业大学
|
The mitochondrial CMS protein WA352 is degraded by ubiquitin proteasome system in rice
|
3
|
董朝斌
|
中国农业大学
|
Regulatory network controlling developmental boundaries and meristem fates contributed to maize domestication
|
4
|
杜会龙
|
河北大学
|
Genomic insights into the domestication and improvement of hexaploid oats
|
5
|
方晓峰
|
清华大学
|
Understanding plant abiotic stress perception and response via biomolecular condensation
|
6
|
冯西博
|
西藏农牧学院
|
待定
|
7
|
关雪莹
|
浙江大学
|
GhLPF1 associated network is involved with cotton lint percentage regulation revealed by the integrative analysis of spatial transcriptome
|
8
|
何航
|
北京大学
|
Precision breeding models based on multi-omics and single-cell approaches
|
9
|
侯昕
|
武汉大学
|
Dynamic pH-dependent interactions of PSB27 regulate photosynthetic acclimation in rice
|
10
|
贾桂芳
|
北京大学
|
The functional regulation of RNA methylation in plant transcription
|
11
|
李一博
|
华中农业大学
|
QT12 confers field thermotolerance for grain quality and yield in rice
|
12
|
梁哲
|
中国农业科学院作科所
|
Mass spectrometry-based proteomic landscape of rice reveals a posttranscriptional regulatory role of N6-methyladenosine
|
13
|
林尤舜
|
上海交通大学
|
Molecular mechanisms regulating alkali-thermal tolerance and yield in rice
|
14
|
刘建祥
|
浙江大学
|
Improving rice thermotolerance by gene-editing a negative regulator NAT1 to increase wax accumulation under heat stress conditions
|
15
|
罗克明
|
西南大学
|
Molecular mechanisms of auxin and gibberellin synergistic regulation of wood development in poplar stems
|
16
|
宋庆鑫
|
南京农业大学
|
Transcriptome-wide association uncovers lncRNAs controlling seed weight in soybean
|
17
|
汪海
|
中国农业大学
|
Cis-regulatory DNA sequence design by AI
|
18
|
许操
|
中国科学院遗传发育所
|
Rational design of climate-smart crops
|
19
|
伊廷双
|
中国科学院昆明植物所
|
Phylogenomic Study revealed Stepwise Evolution of the Root Nodule Symbiosis
|
20
|
张兴坦
|
中国农科院深圳农业基因组所
|
A new paradigm in polyploid genomics reveals the genome organization of sugarcane as a leading sugar crop
|
21
|
张余
|
中国科学院分子植物卓越中心
|
The structural basis of chloroplast transcription
|
22
|
周姚
|
中国科学院植物所
|
Overcoming breeding constraints in polyploid oat from evolutionary insights
|
23
|
周永锋
|
中国农科院深圳农业基因组所
|
待定
|
24
|
周岳
|
北京大学
|
Functional analysis of boundary-associated proteins in plant 3D chromatin structure regulation
|